ABSTRACT:
Tinospora cordifolia is a climbing deciduous shrub. It can be found all over the tropical region of India, as well as in China, Bangladesh, Myanmar, and Sri Lanka. This plant is a member of the Menispermaceae family. It is a well-known medicinal plant that is used in many traditional remedies to treat a wide range of illnesses. Amrita and Guduchi are the common names. It has been used to cure a variety of illnesses, including diabetes, leprosy, skin conditions, diarrhoea, and fever, and is regarded as an essential medicinal plant in the Indian system of medicine (ISM). Alkaloids, Terpenoids, Lignans, Steroids, and other chemical compounds have been documented to be present in the plant, establishing the phytochemistry and pharmacological action of Tinospora cordifolia. Additionally, it exhibits hepatoprotective, antioxidant, anti-hyperglycemic, and anti-neoplastic properties.

Introduction:
Herbal preparations are medicines that contain one or more plants in precise amounts to provide benefits for treating, diagnosing, and preventing illnesses in humans and animals [1]. Botanical medicine or phytomedicine are other names for it. Due to the lack of antibiotics or analgesics in the early 20th century, herbal medicine was the main form of treatment. Herbal therapy gradually lost its appeal among the populace due to the rising use of the allopathic medical system and its quick therapeutic results. For instance, curcuma is a potent antioxidant and anti-inflammatory that has been used in Traditional Chinese Medicine for more than two thousand years [2, 3]. About 70–80% of people are still using herbal medicine for their primary health because of the less side effect and better compatibility with the human body [4]. The use of herbal medicine has increased, and it is more efficient than synthetic medications. Guduchi/Amrita and its Latin names, Tinospora cordifolia and Tinospora sinensis (Lour.) Merr., are other names for T. cordifolia (Wild) Hindi: Giloya; Hook. f. & Thomson, English: Tinospora Gulancha/Indian Tinospora. It is found in China, Myanmar, and Sri Lanka and is a member of the Menispermaceae family [5]. The plant is commonly used as traditional ayurvedic medicine and
LIPPR (2023), Vol. 14, Issue 1

has several therapeutic properties [6, 7] such as jaundice, rheumatism, urinary disorder, skin diseases, diabetes, anemia, inflammation, allergic condition, anti-periodic, radioprotective properties, etc. [8, 9] The root of Giloya (T. cordifolia) is used as potent emetic and for bowel obstruction. The starch of this plant serves a beneficial household remedy for chronic fever, relieves burning sensation, increases energy and appetite. Giloya is useful in the treatment of helminthiasis, heart diseases, leprosy, rheumatoid arthritis, support the immune system, the body's resistance to infections, supports standard white blood cell structure, function, and levels [10]. It also helps in digestive ailments such as hyperacidity, colitis, worm infestations, loss of appetite, abdominal pain, excessive thirst, and vomiting, and even liver disorders like hepatitis [11, 12]. The plant’s pharmacological effects are caused by its chemical components, which are found in various parts of the body of the plant, including the root, stem, and entire part, including sesquiterpenoids, phenolics, aliphatic compounds, essential oils, a combination of fatty acids, and polysaccharides [13].

Pharmacognostic Description

The chemical constituents of the plant, such as sesquiterpenoids, phenolics, aliphatic compounds, essential oils, a mixture of fatty acids, and polysaccharides, can be found in many portions of the plant, including the root, stem, and complete part. [14]. The stem's powder is creamish brown or dark brown, has a distinctive odour and bitter taste, and is used to treat fever, urinary disorders, and dyspepsia [15]. the “Guduchi-satva” starch derived from the stem. It is very nutritious and aids with digestion. This plant has round, pulvinate, heart-shaped, simple, alternating, long-petioled (15 cm), somewhat twisted, and halfway around leaves. Oval, 10–20 cm long, seven nervved, profoundly cordinate at the base, and membranous are the characteristics of the lamina [16].

Flowers are unisexual, axillary, greenish-yellow in colour, and have 2 to 9 cm long leaflet branches. Male flowers are grouped, while female flowers are typically solitary. [17] Its fruits are single-seeded, fruits during the winter and flowers grow during the summer [18]. The root is thread-like, aerial, squarishin, sometimes continuously lengthening touch the ground [19], aerial roots are characterized by tetra to penta arch primary structure [21]. The seeds are curved.

Chemical constituent:-

The chemical constituents of T. cordifolia belong to different classes such as alkaloids, glycosides, steroids, phenolics, aliphatic compounds, polysaccharides, leaves are rich in protein (11.2%), calcium and phos- phorus [22]. The stem contains clerodane furono diterpene glucoside (amritoside A, B, C, and D) and the structure has been established by different spectroscopic studies [23,24,25]. Some of the essential con-stituents reported whereas the structure of the active chemical constituent for Tinospora cordifolia.

Alkaloids, glycosides, steroids, sesquiterpenoid, aliphatic molecule, essential oils, combination of fatty acids, and polysaccharides are the principal components of the plant. Berberine, bitter gilonin, non-glycoside gilonin, and gilosterol are among the alkaloids.

Tinosporine, tinosporide, tinosporaside, cordifolide, cordifol, heptacosanol, clerodane furano diterpene, diterpenoid furanolactone tinosporidine, columbin, and b-sitosterol are the primary phytoconstituents found in Tinospora cordifolia. Its stem contains berberine, palmatine, tembertarine, magniflorine, choline, and tinosporin.

Table 1: Major and sub groups of natural products present in different parts of Tinospora cordifolia and their biological activities[26-46]

Figure 1: Morphology of Tinospora cordifolia

A) steam B) root C) leaves D) flower E) fruit F) seed

Pharmacological activities

1. Anti-Diabetic Activity

The stem of this plant is generally used to cure diabetes by regulating level of blood glucose \(^{[47]}\). It has been reported to act as anti-diabetic drug through explanatory oxidative stress, promoting insulin secretion by inhibiting gluconeogenesis and glycogenolysis. The anti-diabetic properties exhibited by this plant species are attributed due

to the presence of alkaloids (Magnoflorine, Palmetine, Jatrorrhizine) \[48\], tannins, cardiac glycosides, flavonoids, saponins, steroids etc. \[49\]. The crude extract of stem in ethyl acetate, dichloromethane, chloroform and hexane inhibits the enzymes like salivary, amylase and glucosidase resulting in increase in post-prandial glucose level and show potential activities against Diabetes mellitus disease \[50\]. The root extract of this plant has also been reported to have anti-diabetic properties which decrease the level of glycosylated haemoglobin, hydroperoxidase and vitamin E \[51\].

2. Anti-Stress Activity

Sarma et al., reported ethanolic extract of T. cordifolia at the dose of 100 mg/kg gives significant anti-stress activity in all parameters compared with standard drug diazepam (dose of 2.5 mg/kg) \[52\]. The plant extract gives a moderate degree of behavior disorders and mental deficit response. The clinical research showed the improved I. Q level of patients. In Ayurveda, it acts as Medhya Rasayana or brain tonic by increasing mind power like memory and recollection \[53\].

3. Anti-HIV Activity

This plant's root extract has been demonstrated to reduce the body's natural resistance to HIV. Reduction in eosinophil count, activation of B lymphocytes, macrophages, haemoglobin level, and polymorphonuclear leucocytes were indicators of this anti-HIV action \[54,55\].

4. Anti-Cancer Activity

T. cordifolia shows anti-cancer activity, this activity is mostly shown in animal models. Root extract of T. cordifolia has been shown radio protective role due to extensively increase in body weight, tissue weight, tubular diameter. Dichloromethane extracts of TC shows cytotoxic effects owing to lipid peroxidation and release of LDH and decline in GST \[56\]. In pre-irradiating mice, root extract has widely affected radiation, induced rise in lipid peroxidation and resulted in the decline of GSH in testes \[57\]. Most of the synthetic chemotherapeutic agents laid toxic side effects on the living organisms \[58\]. The effect of Giloy has been reported better than doxorubicin treatment \[59\].

5. Anti-microbial activity

Thatte UM et. al. (1992), suggested Tinospora cordifolia methanol extracts have been shown to be effective against microbiological infections. Tinospora cordifolia extracts were tested for antibacterial activity against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Proteus vulgaris, Salmonella typhi, Shigella flexneri, Salmonella paratyphi, Salmonella typhimurium, Pseudomonas aeruginosa, Enterobacter aerogene, and Serratia marcescens (Gram-positive bacteria). TCE has been shown to aid bacterial clearance and improve phagocytic and intracellular bacteria in mice models. \[60-61\]

RESEARCH:-

Leaf extract of T. cordifolia reported to have an alpha-glucosidase inhibitor, characterized as saponarin was found to be also significant anti-oxidant and hydroxyl radical scavenging activity \[53\]. Due to the presence of alkaloids it shows protection against aflatoxin-induced nephrotoxicity . T. cordifolia aqueous extract has a radio protective activity, enhancing the survival of mice against a sub-lethal dose of gamma radiation \[60-61\]. Keeping in view the above mentioned medicinal properties, this plant has been listed an important plant amongst the 32 prioritized plants by NMPB, New Delhi, Government of India. Various funding agencies have been sanctioned the large amount to research on this important

Table -2: Various research projects sanctioned on Tinospora cordifolia by different funding agencies \[60\]
Conclusion

The scientific research on Tinospora cordifolia suggests a huge biological potential of this plant. It is strongly believed that detailed information as presented in this review on the phytochemical and various biological properties of the extracts might provide detailed evidence for the use of this plant in different medicines. The phytochemical variations and efficacy of the medicinal values of Tinospora cordifolia is dependent on geographical locations and seasons. At the same time, the organic and aqueous extract of Tinospora cordifolia could be further exploited in the future as a source of useful phytochemical compounds for the pharmaceutical industry. Even though, there are many herbal plants in the world, Guduchi is considered to be having greater medicinal value. The pharmacological actions attributed to Tinospora cordifolia in Ayurvedic texts have evidences suggesting that this drug has immense potential in modern pharamaco-therapeutics. Various crude extracts from various parts of guduchi have medicinal applications from time immemorial. Tinospora cordifolia can be a potential dietary component which can help in prevention of different diseases. The utility of Guduchi leaves in diet is advisable and is highly beneficial. The presented review summarizes the information concerning the botany, Ethnopharmacology, phytochemistry and biological activity of the Tinospora cordifolia plant. Future directions will entail studies on its pharmacology using animal models and isolated bioactive compounds. Further studies on this plant must be carried out to explore some other important, necessary and unknown benefits.

REFERENCE

33. Yang S, Evens AM, Prachands, Singh AT, Bhalia S, Devid K et al. Diterpenoid lactone and rographolide, the active component of and

58. Sharma V, Pandey D. Beneficial effects of Tinospora cordifolia on blood profiles in male mice exposed to lead Toxic Int 2010; 17:12-17.