Medicinal and therapeutic properties of Jamun (Syzygium cumini) – A Comprehensive Review

Akram Choudhary1, Md. Noman1, Uzma Bano2, Shaikh Yahya1, Asim A Khan3, Jamal Akhtar3, Showkat R. Mir1 and M. Shahar Yar1,*

1Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, India

2School of Unani Medical Education and Research (SUMER), Jamia Hamdard, India

3Central Council for Research in Unani Medicine, Ministry of AYUSH, Government of India

Keywords: Hepatocellular carcinoma, Anti-oxidant, Jamun, Traditional Unani medicine, Active constituent.

Corresponding Author:
Mr. M. Shahar Yar
Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, India
Email: yarmsy@rediffmail.com
Phone no: -

ABSTRACT:
Hepatocellular carcinoma (HCC) is the seventh most common cancer and the third leading cause of cancer-related death globally. It has a poor prognosis and is resistant to the majority of chemotherapeutics. The present review aimed to highlight studies into the tumor cycle and its prevention by appropriate herbal (Ayurvedic/Unani) medicine that is essential to reduce the effects of the deadly disease. There are few treatment options for end-stage liver cancer, which forces patients to undergo expensive liver transplantation, which is not an option in the majority of nations. Herbal medicine has experienced exponential growth in recent years, and due to its natural origins and limited side effects, these medications are becoming more and more popular in both developed and developing nations. The antidiabetic function of *S. cumini* has the most potential nutraceutical value among these advantageous physiological effects. The numerous phytoconstituents included in the fruit, including tannins, alkaloids, steroids, flavonoids, terpenoids, fatty acids, phenols, minerals, carbohydrates, and vitamins, are primarily responsible for *S. cumini's* favourable benefits on health. An overview of the scientific data supporting *S. cumini's* pharmacological potential is provided in this review.
Introduction:
People all around the world have been using medicinal plants as alternative treatments for a variety of illnesses, especially when their positive effects have been supported by scientific research. Hepatocellular carcinoma (HCC) is one of the most common types of solid tumour, currently More than 800,000 cases are diagnosed with this cancer each year worldwide. It is highly aggressive, as currently evidenced by the annual mortality rate of 700,000, which is approximately equal to the incidence of this tumour type. Hepatocellular carcinoma (malignant hepatoma; HCC) is an advanced form of liver cancer that causes skin discoloration, fluid accumulation in the abdomen, blood clotting irregularities, severe abdominal pain, vomiting/nausea, and restlessness. The progressive destruction and regeneration of liver parenchyma are pathological processes that lead to numerous chronic liver disorders. Viral hepatitis, alcoholic or non-alcoholic fatty liver disease, autoimmune hepatitis, cirrhosis, and hepatocellular carcinoma are the most common chronic liver illnesses.

In severe liver damage conditions, the most of the cells either die or transition to a fibrotic condition. In these cases, treatment options include both therapeutic medications and drugs that promote the proliferation of liver cells. Human liver cell lines, either from malignant tissue or produced by genetic engineering of primary liver cells, are commonly employed in in vitro research because they are more readily available. Because of their stable metabolism and increased proliferation potential, these cells are suited for in vitro study under repeated and standardized settings. The hepatoma cell line HepG2 is used in the majority of in vitro research for the development of cancer therapies. Cell lines, according to reports, are critical for investigating metabolic pathways or evaluating new cancer treatments alone or in combination.

Liver diseases
The liver plays an important role in the control of several physiological functions. It participates in a variety of critical activities, including metabolism, secretion, and storage. A wide range of xenobiotics and medications can be detoxified by the liver. Bile acid produced by the liver, along with a few other components, regulates how food is digested. One of the most serious conditions is liver disease. Cirrhosis (which leads to liver fibrosis), hepatizes, and chronic or acute (inflammatory illness) are the three types (non-inflammatory ailment). They are typically caused by a combination of risk factors that generate oxidative stress in the liver, which leads to lipid peroxidation and other oxidative damage to the liver cells. Increased lipid peroxidation during the liver's microsomal ethanol processing can cause hepatitis and cirrhosis.

Risk factors for liver cancer
Chronic infection with the Hepatitis C and B viruses has been identified as the common component producing liver cirrhosis. The hepatitis C and B viruses can transfer from one person to another through the use of contaminated needles and the sharing of blood. A blood test before a blood transfusion can help to reduce the likelihood of transmission. Another risk factor is alcoholism, which causes liver cirrhosis and hepatic cancer. Smoking, being overweight, having diabetes, and using tobacco all raise the risk of developing liver cancer. Furthermore, long-term exposure to thorium dioxide (an X-ray chemical), vinyl chloride, and aflatoxin can raise the chance of developing cirrhosis and liver cancer.

Jamun (S. cumini) is one of the known herbal medicinal plants in the Unani system of medicine (USM). In India and several nearby nations, the Unani System of Medicine (USM) is practised as a kind of complementary, alternative, and traditional medicine. This plant, which has 2,800 species and 90 genera, is a sizable tropical evergreen glabrous tree. Ibn Batuta, who traveled to India in 1332 AD, named it one of Delhi's fruits. Since ancient times, it has been...
discovered all across India, as well as other nations like Nepal, Myanmar, Sri Lanka, Indonesia, Pakistan, Bangladesh, Malaysia, Thailand, and other tropical areas of the globe. India is one of the nations that has been gifted with a rich history of conventional medical practices and a rich biodiversity to support the herbal needs of conventional medical practices' treatments. Ayurveda, Yoga, and Unani are the accepted Indian medical systems. Siddha and Unani, whose compositions include plants and minerals. India, which has 15 agro-climatic zones and 47000 plant species, is said to have 15000 of them with varied degrees of medicinal characteristics. The World Health Organization (1980) also advised assessing the efficacy of plants in situations where there are no safe synthetic medications available.

Fig. 2. Therapeutic activities of Jamun (S. cumini)

Botanical description:
a smooth, 4–15-meter-tall member of the Myrtaceae family tree. Leaves are 6-12 cm long, leathery, oblanceolate to elliptical or obovate, and have a broad, pointy tip. The panicles, which are often axillary or terminal and 4-6 cm long, are borne largely from the branchlets beneath the leaves. Numerous, fragrant, pink or almost white, stalkless, and borne in dense fascicles at the tips of the branchlets are the flowers. The calyx has four teeth, is funnel-shaped, and is around 4 mm. The petals stick together and drop as a single tiny disc. The calyx and the stamens are both equally long and abundant. Fruit is 1.5-3.5 cm long, oblong to elliptical, dark purple or almost black, luscious, juicy, and tasty. It contains one huge seed.

Vernaculars names and Scientific Classification
It is a very popular herbal medicine but it is known by various names in different languages and Scientific Classification such as:

phytochemistry of Jamun
Jamun contains phytochemicals in all of its parts: leaves, fruit, seed, and bark. Various studies have revealed the presence of phenols, flavonoids, alkaloids, glycosides, steroids, cardiac glycosides, saponins, terpenoid, and tannins in Jamun leaf extract as demonstrated by α-pinene (32.32%), β-pinene (12.44%), trans-caryophyllene (11.19%), 1, 3, 6-octatriene (8.41%), delta-3-carene (5.55%), α-caryophyllene (4.36%) and α-limonene (3.42%) are the most abundant elements of the oils in Jamun leaves.
Fig. 3. Chemical structures of some important phytochemicals found in various parts of the Jamun, Syzygium cumini.

Table-2 Summary of Syzygium cumini

<table>
<thead>
<tr>
<th>S. No</th>
<th>Plant part</th>
<th>Metabolic class</th>
<th>Active Constituents</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Seeds</td>
<td>Phenolics, including flavonoids, alkaloids, glycosides and phenolic compound, fatty oils</td>
<td>Quercetin, Rutin, 3,5,7,4'-tetrahydroxy flavones, caffic acid, ellagic acid, ferulic acid, albumen, fat, jambosine, ellagic acid, lauric, myristic, palmitic, stearic, oleic acid, linoleic, malvalic and vernolic acid and phytosterols</td>
<td>Diabetes (Leaf, Bark, Seed, Pulp), Anti allergic (Leaf), Antioxidant (Leaf, Fruit, Seed), Anti-Viral (Leaf), Anti-bacterial (Leaf, Seed), Anti-cancer (Fruit), Anti-inflammation (Seed, such as β-sitosterol.</td>
</tr>
<tr>
<td>2.</td>
<td>Leaves</td>
<td>Phenolic content and acetylated flavonol glycosides</td>
<td>Ferrulic acid, catechin, cretegolic acid, n-dotricontanol, myrcetin, mycaminose, quercetin, tannic acid, BHA, tocopherol.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Fruit</td>
<td>Tannins, Glycosides, Vitamin A, C</td>
<td>Oxalic acid, malic acid, gallic acid cyanidine diglycosides, thiamine, riboflavin, nicotinic acid, folic acid</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Fruit pulp</td>
<td>Anthocyanins, volatile oils, terpenes</td>
<td>Petunidin, α-pinene, β-pinene, malvidin, peonidin, cyanidin, delphinidin, pelargonidin</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Stem bark</td>
<td>Triterpenoids, Resin, Resin, Phytoesterol</td>
<td>Oleaenolic acid Eugenia-triterpenoid-A Eugenia-triterpenoid-B Ellagic acid, Pentacyclic triterpenoid-Betulenic acid, Pentacyclic triterpenoid Friedelin, Myricetine, β-sitosterol, Myricyl alcohol</td>
<td></td>
</tr>
</tbody>
</table>
Table 3: List of phytochemicals present in Syzygium cumini

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Plant part</th>
<th>Chemicals present</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Leaves</td>
<td>Mycaminose, crategolic (Maslinic) acid, β-sitosterol, Betulinic acid, heptacosane, n-dotricontanol, quercetin, n-nonacosane, n-hentriacontane, n-octacosanol, ntriacontanol, myricetin, myricitrin and the flavonols glycosides myricetin 3-O-(400-acetyl)-α-L-rhamnosyranosides</td>
</tr>
<tr>
<td>II.</td>
<td>Flowers</td>
<td>Oleanolic acid, Ellagic acids, isoqueretin, quercetin, Kaempferol, and myricetin</td>
</tr>
<tr>
<td>III.</td>
<td>Stem</td>
<td>Fried Elin, Betulinic acid, friedelan-3-α-ol, β-sitosterol, gallic acid, Kaempferol, β-sitosterol-D-glucoside, ellagic acid, Gallotannin and myricetin and ellagitannin.</td>
</tr>
<tr>
<td>IV.</td>
<td>Fruit pulp</td>
<td>Anthocyanins, delphinidin, petunidin, malvidin-diglucosides</td>
</tr>
<tr>
<td>V.</td>
<td>Seeds</td>
<td>Jambosine, gallic acid, ellagic acid, corilagin, 3,6-hexahydroxydiphenoylglucose, 1-galloylgucose, 3-galloylgucose, quercetin, β-sitosterol, 4,6 hexahydroxy diphenoyleglucose</td>
</tr>
<tr>
<td>VI.</td>
<td>Essential oils</td>
<td>α-Terpineol, eucarvone, myrtenol, muurolol, geranyl acetone, α-myrtental, 1, 8-cineole, pinocarvone and α-cadinol.</td>
</tr>
</tbody>
</table>

MEDICINAL PROPERTIES:

Hepatoprotective activity:

The ethanolic extract of the pulp of *E. jambolana* (EPEJ) was tested for its ability to protect the liver.
against paracetamol (PCM)-induced hepatotoxicity in albino rats. When compared to control rats, paracetamol significantly increased the levels of blood marker enzymes aspartate aminotransferase (ALT), alanine aminotransferase (AST), and ALP, while decreasing total protein and albumin content. Pre-treatment of rats with two dosages (0.1 and 0.2 g/kg body weight) of *E. jambolana* and the conventional medication silymarin resulted in a drop in enzyme levels and an increase in total protein and albumin content. The most commonly used markers of hepatocellular damage are serum levels of AST, ALT, and ALP. Elevated levels of these blood enzymes were indicative of cellular leakage and loss of cell membrane functional integrity in the liver. Total protein and albumin levels were lower, indicating a loss of hepatocyte biosynthetic function, whereas bilirubin levels were higher, indicating a failure of hepatocellular absorption, conjugation, and excretion of bilirubin due to hepatic cell function. The reduced rise in serum enzymes, as well as the reduced decrease in total protein and albumin levels in the extract (EPEJ)-treated groups, was a clear expression of the extract's hepatoprotective action. EPEJ administration also restored the liver's histological structure to near normal. EPEJ likely stabilised hepatocyte plasma membranes and repaired damaged hepatic tissues by boosting hepatocellular protein production and accelerated hepatocyte regeneration. The main mechanism behind all of these benefits was most likely the reduction of oxidative stress caused by paracetamol, which was caused by EPEJ's antioxidant activity. The flavonoids, gallic acid, and anthocyanins found in *E. jambolana* pulp served as natural antioxidants.

Thus, EPEJ protected against paracetamol-induced liver damage by boosting reduced glutathione concentration and the activity of antioxidant enzymes such as superoxide dismutase, scavenging free radicals and avoiding oxidative stress-mediated cellular damage. According to the literature, it has hepatoprotective properties. In rats given hepatotoxic paracetamol, the Ethanolic Extract of The Pulp of *Eugenia Jambolana Lam.* at doses of 100 mg/kg and 200 mg/kg exhibited considerable hepatoprotective action. It was discovered that the methanolic extract of *Eugenia Jambolana Lam.* was effective at an oral dose of 400mg/kg/day against the hepatotoxicity produced by carbon tetrachloride (CCL4). Jamun and its anti-inflammatory properties: The property of a chemical or medicine that lowers inflammation is known as anti-inflammatory. Anti-inflammatory medications alleviate pain by lowering inflammation. These medications can be used to treat pain, stiffness, edoema, and fever. The property of a chemical or medicine that lowers inflammation is known as anti-inflammatory. Anti-inflammatory medications alleviate pain by lowering inflammation. These medications can be used to treat pain, stiffness, edoema, and fever.

It has been claimed that the seeds of *S. cumini* exhibit anti-inflammatory effect, which has the same chemical structure as cholesterol and is particularly useful in lowering blood cholesterol. Jamun contains polyphenols, which have been shown to have anti-inflammatory properties in humans. Anthocyanins, which give blackberries their distinctive colours of red, blue, and purple, are among the most famous polyphenols found in them. Thus, it was discovered that jamun seeds include anti-inflammatory qualities that are good for preserving human health and treating heart disease, reducing inflammation, boosting immunity, and counteracting discomfort, stiffness, and lowering cholesterol. Jamun seeds have been extensively researched for their antioxidant qualities; nonetheless, preliminary findings indicate significant impacts on inflammatory pathways.

Jamun and its Anti-diabetic properties: Diabetes Mellitus is one of the most common endocrine illnesses, and it is associated with a variety of metabolic abnormalities. The World Health Organization recommends using traditional medicine to treat diabetes. Alternative approaches including conventional medicinal compounds are being considered in order to obtain lower blood glucose levels with little side effects and at a reasonable cost.

According to researcher, after 1 hour in excess glucose, an ethanolic extract of *S. cumini* reduced blood sugar levels by 20% in rabbits. Several further animal investigations have shown the role of jambul in diabetes treatment. As a result, it was discovered that many authors extracted the seeds of *S. cumini* and conducted research to determine the anti-diabetic effect of jamun.
Immunomodulatory Activity:
The immunomodulatory effect of *S. cumini* seed extract was investigated. In rats, it was found to have a dose-dependent effect on the humoral antibody levels and the delayed-type hypersensitivity (DTH) reaction. The medication caused an increase in the total quantity of white blood cells, lymphocytes and neutrophils in rats. According to the findings of this investigation, *S. Cumin* seed extract showed the ability to boost the body’s hematological system, suggesting that the plant has the potential to treat immune-deficient disorders brought on by radiotherapy or chemotherapy.

Anti-cancer Activity:
Cancer is the unchecked expansion of aberrant cells in the body, which results in the formation of tumours, or masses of tissues. When the body's regular regulating mechanism breaks down, the old cells proliferate out of control and give rise to new, aberrant cells rather than dying. The second leading cause of death in humans, behind cardiovascular disease, is a non-communicable killer called cancer. Surgery, radiation, chemotherapy, or a combination of these methods are used to treat cancer (or all). 33, stated that A higher risk of developing cancer has been associated with environmental, nutritional, or lifestyle variables. In order to prevent and treat cancer, many scientists are looking for alternatives that are efficient, non-toxic, and economical. Due to the abundance of bioactive phyto-chemicals found in blackberries/jamun, such as anthocyanins and polyphenols, the anti-cancer potential of these fruits is receiving a lot of attention these days. According to epidemiological evidence, consuming more dark-coloured fruits like jamun can help reduce your chance of developing some malignancies by increasing your antioxidant intake.

Central nervous system (CNS) activity
At dose levels of 200 mg/kg and 400 mg/kg, the Central Nervous System Activity of ethyl acetate and methanol extracts of jamun (*Syzygium cumini*) seed on Albino mice was examined using a rota rod and an actophotometer, respectively. They discovered that the safe dose for animals was 2000 mg/kg body weight, and both extracts considerably reduced spontaneous loco-motor activity in mice, indicating a central depressive action.

Antiallergic activity
According to HPLC analysis, the extract’s main components include hydrolyzable tannins and flavonoids. The antiallergic activity of jamun (*Syzygium cumini*) aqueous extract implies that its antiedematogenic effect is related to mast cell degranulation inhibition as well as serotonin and histamine effects, whereas the inhibition of eosinophil accumulation in the allergic pleurisy model is likely due to an impairment of CCL11/eotaxin and IL-5 production, as demonstrated by 35.

CONCLUSION:
Through literature review specifically on the liver-protective and antioxidant properties of Jamun was carried out and the data has been compiled and presented here. This information will be useful to researchers involved in liver carcinoma and free radical scavenging studies. This review provides a scientific foundation for the rational discovery, development, and application of Jamun (*Syzygium cumini*), in future treatment practice. Furthermore, pre-clinical studies are required to improve our understanding of phytoconstituents' anti-HCC and antioxidant activity. Thus, a more specific evaluation of natural sources is required. These herbs have anticancer potential due to their hepatocellular carcinoma and antioxidant capabilities. Knowledge of anticancer medicinal plants used by people from around the world from different countries is also included in this article. Utilizing cutting-edge anticancer medications made from therapeutic plants is also essential.

ACKNOWLEDGEMENT:
One of the authors (MSY) wish to acknowledge the Central Council for Research in Unani Medicine (CCRUM), New Delhi; Jamia Hamdard [Deemed-to-be-University] to conduct this study. The authors are also thankful to South Asian University for their continuous support during this study.

FUNDINGS: Financial support and scholarships were granted by the Central Council for Research in Unani Medicine (CCRUM) (Grant/Award Number: 16-116/2021).

CONFLICT OF INTEREST: The authors declare that they have no conflict of interest.

Ethical approval: Not required

ABBREVIATIONS:
LUPPR (2023), Vol. 14, Issue 2

REFERENCES

18. Ramos IL, Bandiola TM. Phytochemical screening of Syzygium cumini (myrtaceae)
Review Article

M. Shahar Yar et al

Akram Choudhary
(akramchoudhary1593@gmail.com);
Md. Noman (omanqasmi09@gmail.com);
Uzma Bano (uzmabano@jamiahamdard.ac.in);
Asim A Khan (unanimedicine@gmail.com);
Jamal Akhtar (ccrum786@gmail.com);
Shaikh Yahya (1992skyahya007@gmail.com);
Showkat R. Mir (smrir@jamiahamdard.ac.in);
M. Shahar Yar (yarmsy@rediffmail.com);